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ABSTRACT

We present a formulation of boundary condition for flows

with small disturbances. We test our methodology in an

axisymmetric jet flow calculation,_ using both the Navier-
Stokes and Euler equations. Solutions in the far field are

assumed to be oscillatory. If the oscillatory disturbances

are small, the growth of the solution variables can be pre-

dicted by linear theory. We use the eigenfixnctions of the
linear theory explicitly in our formulation of the boundary

conditions. This guarantees correct solutions at the bound-

art in the limit where the predictions of linear theory are

valid.

Keywords: Nourefiecting boundary condition, Com-

putational aeroacoustics, Jet flow computations

INTRODUCTION

Any attempt to directly compute the noise source from

the flow field demands high accuracy of the numerical meth-

ods, including the treatment of the boundary conditions.

Treatment of the outflow boundary for stable and accurate

flow simulations has attracted considerable attention [see

for example Engqulst and Majda (1977), Bayliss and Turkel

(1982), Scott and Hankey (1985), Hagstrom and Hariharan

(1988), Roe (1989), Giles (1990), Harihffr_m and Hagstrom

(1990), Thompson (1990), Tam and Webb (1993), Atkins

and Casper (1994)]. One usually idealizes a physical prob-

lem to formulate the conditions at the boundary. The ef-

fectiveness of the boundary condition is dependent on the

degree of validity of the idealized assumptions in the actual

flow situation. Approaches based on linear analysis, espe-

cially variations of the characteristic methods, are widely

used. Various investigators have derived essentially the

same asymptotic pressure boundary conditions [See Hay-

der and Turkel(1994) for a discussion of various works on

this boundary condition, an evaluation of its effectiveness,

and comparisons with other boundary conditions]. Hayder

and 2_trkel (1994) observed that the asymptotic pressure

boundary condition gave reasonable results. They how-
ever recommended a small exit region beyond the region

of interest. Their experiments indicated that Giles(1990)

and characteristic boundary conditions with a larger exit

layer also yields reasonable solutions. Because of the differ-

ence in the asymptotic forms of wave equations in two and

three dimensions, this boundary condition is slightly differ-
ent in three dimensions from two dimensions [see Hayder

and Turkel (1994)]. Hariharan and Hagstrom (1990) formu-

lated higher order forms of this boundary condition. As we

stated earlier, a boundary condition will give satisfactory re-
sults if the assumptions used to derive the condition closely

follow the actual flow situation.

In this paper we present a new approach to boundary
treatment based on the linear stability theory. The govern-

ing equations of the fluid flow are nonlinear. However, if

a mean flow is excited by a small disturbance, the linear

theory can be used to predict its growth. Also, the eigen-

functions given by the linear theory describe the profiles of
the disturbances after an initial adjustment region. This

phenomenon motivates our present effort to find a bound-

ary condition for a flow with small disturbances. "We as-



sume the profiles of the disturbances at the outflow can be

approximated by the eigenftmctions predicted by the linear

theory. The particular eigenfunctions chosen would gener-

ally correspond to the most unstable modes. However, any

eigenmodes could, in principle, be used. The latter may

be relevant for forced problems, where the excited modes

may be determined by the forcing. The boundary condition

that is developed here should be accurate for cases where

the linear theory accurately describes the disturbances at

the boundary and where these are dominated by a single,

kno_ mode. It may not be appropriate when the nonlin-

earity in the flow is significant.

In Sections 2 and 3, we give, respectively, the governing

equations for our test problem and the derivation of our

new boundary condition. A discussion of the basic scheme

for our test problem is given in Section 4 and we present our

results in Section 5.

GOVERNING EQUATIONS

We compute the flow field of an axisymmetric jet to test

our new boundary conditions. We solve the Navier-Stokes

equations as given below

where

Q,+F=+G_=S

F_T
pu 2 -- _xx + P

puv - _zr

puH - uTxx - vTxr - aT_

V -_ r
puv - "r_r

pv 2 - T,.,- + p

pvH - u'rx,. - vm,.,. - aT,.

(o)0

S= p - _oo

0

Q represents the solution variables, F and G are the fluxes

in the x and r directions respectively, S is the source term

that arises in the cylindrical polar coordinates, and rij are

the shear stresses.

DERIVATION OF THE BOUNDARY CONDITION

The governing equations for the fluid flows are the Navier

Stokes equations. For high Reynold number flows, the vis-
cous effect is small and one has to decide whether the bound-

ary treatment should be based on the Euler equations or

the Navier-Stokes equations. The difference between the

two approaches is not just the type of boundary conditions

but even the number of boundary conditions that need to

be given. For inviscid subsonic flow, one boundary condi-

tion needs to be specified at outflow corresponding to an

incoming acoustic wave. For supersonic flow no boundary

condition is required. For viscous flow the equations are no

longer hyperbolic but rather incompletely parabolic. For

inflow, four conditions need to be specified (in two dimen-

sions), while for outflow, three conditions need to be spec-

ified. In particular, the number of conditions does not de-

pend on whether the local flow is subsonic or supersonic.

Many codes use inviscid type boundary conditions. This

is based on the assumption that the flow in the far field

is essentially inviscid because of the high Reynolds number

and the lack of physical boundary layers. Hayder and Turkel

(1993) considered a framework for implementing the bound-

ary conditions, where the formulation is of a characteristic

type, but where viscous effects are also partially accounted
for. We will use that framework for our present study. At

subsonic outflow, we extrapolate three characteristic vari-

ables from the interior and impose one boundary condition.

This is done by solving the following set of equations.

pt - pcu_ = R1

pt + pcu_ = R2 (1)

p_ - c2p, = R3

Vt ._- R4

where R4 is determined by which variables are specified and

which are not. Whenever, the combination is not speci-

fied,/_/is just those spatial derivatives that come from the

Navier-Stokes equations. Thus, R/ contains viscous con-

tributions even though the basic format is based on invis-

cid characteristic theory. In implementing these differential

equations we convert them to conservation variables p , m

= p u , n = p v and E. Assuming an ideal gas we then have

u 2 + v 2

2

mt up_
%1,t --_

P P

nt vpt

P P

For subsonic outflow we calculate R2, R3, R4 from the

Navier-Stokes equations and set R1 as prescribed by the

given boundary condition. For supersonic flows, all the/_

at the outflow boundary can be calculated from the Navier-

Stokes equations or else by extrapolation of all the charac-

teristic variables from the interior.



In this work, we assume the solution variable Q at the

outflow behaves as

= +

where Q is the mean and QI is the oscillatory part of the

variable Q and

Q' = e_'_[C1 cos(a.x - wt) + C2 sin(a_x - wt)]

Thus at outflow,

v, = A coswt +V r Vi

p* Pr Pi

B sinwt

where w is the excitation frequency. Here, the vectors deter-

mining the structure of the disturbances are eigenfunctions

of the linear stability equations. They are used explicitly

in our boundary conditions. This form for the disturbances

should hold if the solution is well-approximated by linear

theory.

.R 1 Pt -pcut
w ( - APr sinwt + B Pi coswt)

- pew( -A u_ sin wt + B ui coswt)

Pt +pcut
w ( - APr sinwt + B Pi coswt)

+pcw( -A Ursin wt + B ui coswt)

pt - c2 pt

w ( - A Pr sinwt + B pi coswt)
- c2w( -A Pr sin wt + B pi coswt)

Let A = A w sinwt and B = B w coswt. Then

or

-p. - pcu_ Pi -4- pcu_ /-Pr -t- c2 pr Pi - ¢2pi

= -_ p_ c2p_ -p_ - pcu_ R3

boundary condition [equation(2)]in other frameworks. For

example, the framework presented in Tam and Webb(1993)

uses the llnearizedEuler equations. One can implement our

condition by replacing the condition corresponding to the

incoming acoustic wave by equation (2). One may expect

to see some differenceswith the same boundary condition is

implemented in differentways.
We note that a similarconstruction could, in principle,be

carriedout at the inflow boundary. To do so, an eigenmode

corresponding to a left-moving wave should be identifiedand

itsamplitude relatedto the outgoing characteristicvariable,

RI. Finally,the incoming variablescould be specified,again

using the assumed form of the disturbance. We have not yet

explored the feasibilityof thisapproach.

BASIC SCHEME

We use a high order extension of the MacCormack Scheme

due to Gottlieb and Turkel(1976). It has a predictor and a

corrector stage and may be written as:

The predictor step with forward differences is

At "7"F '_ n
= Q?+ / ( - - (Fh - + ,',ts?

The corrector step with backward differences is

1

Q_+I = 2[(_ i + Q_

This scheme is second order in time and becomes fourth-

order accurate in the spatial derivatives when alternated

with symmetric variants. We define L1 as a one dimen-

sional operator with a forward difference in the predictor

and a backward difference in the corrector. Its symmetric

variant L2 uses a backward difference in the predictor and

a forward difference in the corrector. For our computations,

the sweeps are arranged as

Q,_+I = LI_LI_Q_

Qn+2 = L2_L2_Q=+I

Further description of our implementations can be found

in Hayder et a1.(1993) and Mankbadi et a1.(1994).

R1 = -4(-p. + pcu.) +/} (p_ - pcui) (2)

Equation (2) is our new boundary condition and we use this

value of R1 in equation (1) for our numerical tests. We

would like to point out that one can implement our new

RESULTS

We test our new boundary condition for _n axisymmet-

ric jet flow calculation. Details of such calculations can be

found in Hayder et al. (1993) We note that the flow is



unstable, and hence provides a stiff test for any boundary

condition. Here, the initial axial velocity is specified as

1

_(r) = 2[(1 + u_) - (1 - ucc)tanh(4(r - 1))]

and the corresponding temperature is given by the Buse-

mann -Crocco integral of the energy equation:

T(r) = To + ---_M2(1 - _)(_ - uoo).

Here uoo = .25 and the jet center temperature is assumed

to be equal to the outer flow temperature, i.e., To = Too.

The jet Mach number is M=l.5 and Reynolds number based

on the jet radius is 364,000. We excite the inflow profile at
location r and time t as

W(r, t) = _V(r) + _Re(W' e _')

where W = (p,u,v,p) T, ITv is the mean and W t is the

eigenfunction of the linear stability equations correspond-

ing to the mean flow profile which has the most rapid

growth rate. For our numerical tests we used w = 1.08 and

e = 10 -6. Eigenfunctions (EF) are obtained by solving the

linear stability equations and also using our flow code. In

our implementation of the new boundary condition, we use

for the eigenfunctions the average of those obtained from

the linear stability calculations and those computed from

our flow code, i.e.,

E-/_Linear Theory "+ EFcode

E Fbc = 2

We show contours of vorticity magnitude for Navier Stokes

computations Figure 1. Similar computations with Euler

equations are shown in Figure 2. We used three compu-

tational domains. They are 60, 50 and 40 radii long. All

three computational domains are 5 radii wide in the trans-

verse direction. The results at the outflow boundary of the

shorter domains i.e., xl = 40 and 50 compare well with the

same quantities at the same locations in the long domains.

The present boundary condition gave satisfactory results.

Because of very high Reynolds number used in our compu-

tations, there is virtually no difference between our solutions

of the Euler and the Navier Stokes equations.
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Figure 1: Solutions of the Navier-Stokes equations
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